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Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated
numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the
first phase, the pulse steepens, compresses, and frequency red-shifts as energy is deposited in the
plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which
point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of
laser energy loss and rate of laser red-shifting are derived and are found to be in excellent agreement
with the direct numerical solution of the laser field evolution coupled to the plasma response. Both
processes are shown to have the same characteristic length-scale. In the high intensity limit, for
nearly-resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity.
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I. INTRODUCTION

The evolution of a short, intense laser pulse propagat-
ing in an underdense plasma is of fundamental interest
in plasma physics with application to fast ignition fusion,
harmonic generation, x-ray lasers, and laser-plasma ac-
celerators. Laser-plasma accelerators, for example, have
demonstrated the production of high quality electron
bunches with energies up to 1 GeV using plasmas on the
order of 1 cm.1 A fundamental limit to the laser propa-
gation distance, and consequently the single-stage energy
gain in a laser-plasma accelerator, is the transfer of laser
energy into plasma wave (wakefield) excitation.

In a laser wakefield accelerator,2 an intense pulse with
vector potential A⊥ ∼ mc2/q will drive a large ampli-
tude plasma wave with peak electric field Ez ∼ mcωp/q
when the laser pulse length satisfies the resonant condi-
tion ωpL ∼ 2c, where ωp =

√

4πq2n0/m is the plasma
frequency, n0 the ambient electron plasma density, q the
electron charge, m the electron mass, and L/

√
2 is the

RMS pulse length of the laser vector potential. The loss
of energy by the laser pulse, while propagating through
plasma driving a wakefield, is generally referred to as
pump depletion. The scale length over which the laser
pulses depletes the bulk of its energy, Lpd, has been pre-
viously estimated by energy conservation arguments,3,4

by equating the initial energy in the pulse to the en-
ergy left behind in the wake. Ting et al.3 find kpLpd #
4πk2

0k
−2
p a−2

0 for a2
0 $ 1, and kpLpd #

√

2/3 k2
0k

−2
p a0 for

a2
0 % 1, where a0 = qApeak

⊥ /mc2 is the peak dimension-
less vector potential and kp = ωp/c and k0 = ω0/c are
the plasma and laser wavenumbers, respectively. Con-
sidering both the electrostatic and kinetic energies of
the wake excited by a flat-top laser pulse, Teychenné
et al.4 find kpLpd = 4k2

0k
−2
p γ3

⊥(γ2
⊥−1)E2(1−γ−2

⊥ ), where
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γ2
⊥ = 1 + a2

0/2, and E2 is the complete elliptic function
of the second kind. Scale lengths for laser depletion have
been derived in the weakly-relativistic limit (a0 $ 1) for
the plasma beat wave accelerator by Horton and Tajima5

and for the standard laser wakefield accelerator by Bu-
lanov et al.6

The energy gain by an electron bunch in a laser-driven
plasma accelerator is determined by a number of factors
that roughly reduce to the product of the electric field
of the plasma wave and the effective acceleration length
(laser-plasma interaction length). The longitudinal field
of the laser-driven plasma wave is determined in large
part by the dynamics of the laser pulse (though beam-
loading effects also come into play). The effective accel-
eration length is also largely determined by the evolution
of the laser pulse. For typical laser-plasma parameters,
the most significant limitation on acceleration length is
due to laser diffraction. Without some manner of opti-
cal guiding, the distance over which the electron bunch
is subject to a significant accelerating gradient will be
limited to a few Rayleigh ranges.

Extension of the laser-plasma interaction length to
many Rayleigh ranges has been achieved through a com-
bination of pre-formed plasma channel guiding, relativis-
tic self-focusing, and ponderomotive self-channeling, en-
abling production of high-quality electron beam energies
from 100 MeV7–10 to 1 GeV.1,11,12 These guiding mech-
anisms can lead to near balance of transverse forces and
little evolution of the spot size. As a result, the dynam-
ics of the laser pulse are largely governed by longitudinal
dynamics. For this reason we restrict our discussion to
a one dimensional plasma to fully understand the phe-
nomenology associated with the longitudinal dynamics
of the laser pulse. Results incorporating transverse dy-
namics will be the subject of a future paper.

Although various scaling laws have been derived pre-
viously based on energy balance arguments for specific
pulse shapes, a detailed study of pump depletion for large
laser intensities, including comparison to accurate nu-
merical models, is lacking. We present a comprehensive
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numerical study of laser depletion via solutions to the
Maxwell equations coupled to a fluid plasma response.
In addition, we develop an analytical theory for the rate
of change of the laser pulse energy which is shown to be
in excellent agreement with the numerical solutions.

II. LASER EVOLUTION

To study the laser evolution and plasma wave exci-
tation, we solve the full one-dimensional fluid-Maxwell
equations numerically. We cast the fluid equations for the
plasma density n, and momentum p, as well as Maxwell’s
equations for E and B in the co-moving coordinates,
(t, ξ = ct − z):

∂tn + ∂ξ [n (c − vz)] = 0

∂tpx + (c − vz)∂ξpx = q
(

Ex −
vz

c
By

)

∂tpz + (c − vz)∂ξpz = q
(

Ez +
vx

c
By

)

∂tEx − c∂ξBy = −4π q n vx

∂tEz + c∂ξBy = −4π q n vz

∂tBy − c∂ξEx = 0,

(1)

where v = p/(mγ), γ2 = 1 + p2/(m2c2), and the plasma
current is j = qnv. This system is conservative; in the
moving window it is a straightforward calculation to show
that the total energy is given by

H =

∫ ξ2

ξ1

dξ

(

mc2nγ +
E2 + B2

8π

)

+

∫ t

0
dt′

[

S(1) − S(2)
]

,

where S(1,2) is the Poynting flux

S = mc2nγ (c − vz) + (c/8π)
[

E2
z + (By − Ex)2

]

evaluated at the upstream (ξ1) and downstream (ξ2)
coordinates of the window boundaries respectively. At
the upstream end, we assume no excitation precedes the
laser, thus S(1) = mc3n(ξ1, t).

Figure 1 shows the laser evolution and plasma response
for a near-resonant laser pulse as determined by Eqs. (1)
at selected times. Two case are shown: a0 = 1 (left)
resulting in a weakly nonlinear plasma wave; and a0 = 2
(right) resulting in a strongly nonlinear plasma wave. In
both cases k0 = 20kp and the dimensionless vector poten-
tial is initially qA⊥/mc2 = a⊥ = a0 exp(−ξ2/L2) cos k0ξ.
For the same parameters, Fig. 2 shows detailed evolu-
tion of: the laser pulse a⊥ [(a) and (e)]; the wakefield
Ez [(b) and (f)]; the laser power spectral density (PSD),
|ã⊥(k, t)|2, [(c) and (g)]; and the mean wavenumber 〈k〉
computed from the first moment of the laser PSD, the
laser energy, and wave action [(d) and (h)].

The dynamical equations are solved numerically (in
dimensionless form) using the method of lines, an ex-
plicit finite-difference, time-domain approach.13 The ξ-
derivatives are approximated using second-order back-
wards finite-differences, yielding a set of ordinary dif-
ferential equations for each spatial grid point, which

are advanced in time using a second-order Runge-Kutta
method. No other approximations are involved in solving
Eqs. (1), in particular, the high-frequency oscillations of
the laser are explicitly retained. All computations were
preformed with k0∆ξ = 1/32 (approximately 200 grid-
points per laser wavelength) and ωp∆t = kp∆ξ/4, which
is dictated by stability requirements. As will be discussed
below, this resolution was required to accurately capture
the change in laser wavenumber as the pulse depleted.
For the results presented, H varied by less than 1 in 104

over the entire calculation.

As the laser pulse propagates, its shape evolves due to
interaction with the plasma. The plasma is modulated
within the laser pulse which initially leads to a steepening
of the laser pulse6,14,15 due to frequency red-shifting and
the variation of local group velocity throughout the pulse:
the trailing edge of the pulse sees a lower plasma density
and consequently has a higher local group velocity than
the leading edge. This results in a longitudinal compres-
sion of the pulse leading to a larger amplitude and to a
non-Gaussian, skewed laser profile. The increased laser
amplitude leads to both a larger wake amplitude and,
consequently to a phase shift of the wakefield, as is evi-
dent in Fig. 2.

For the a0 = 1 case, the pulse reaches its maximum
amplitude at approximately ωpt = 2000. Consistent with
this is the growth of the wakefield amplitude. The effects
of laser frequency red-shifting are also visible; the back
of the laser pulse has a longer wavelength, as illustrated
in Fig. 1. The gradient in density at the back of the laser
pulse leads to a gradient in local laser phase velocity and,
therefore, to growing separation of the peaks of the laser
field and increasing wavelength. After ωpt = 2000, the
pulse length begins to dramatically increase. At approx-
imately ωpt = 3000, the pulse becomes sufficiently long
to lose resonance with the plasma resulting in a much
diminished wake amplitude. The laser energy [Fig. 2(d)]
has an inflection point at approximately ωpt = 2000 cor-
responding to the time of largest laser amplitude. The
knee in this curve near ωpt = 3000 points to the short
time interval over which the pulse length expands. The
reduction in slope at subsequent times is due to the loss
of resonance, leading to weaker coupling and reduced
transfer of laser energy to the plasma. Figure 2(c) shows
the power spectral density, |a⊥(k)|2, of the laser pulse.
Both red-shifting due to depletion and the formation
of side-bands (related to envelope distortions) are visi-
ble. The red-shifting is proportional to the gradient in
plasma density,16 ω/ωp # 1 − (ω2

p/2ω2
0)

∫

cdt ∂ξ(n/n0γ),
and therefore the red-shifting is most pronounced at the
back of the laser pulse, where the plasma density gra-
dient is large. Figure 2(c) also shows the evolution of
the mean wavenumber 〈k〉 and the wave action W (see
Sec. II C). As the pulse evolves, 〈k〉 closely tracks the
energy evolution until the pulse distortion becomes sig-
nificant. Throughout the entire evolution of the laser,
the wave action, though only approximately invariant,6,17

changes very little.
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FIG. 1: Laser (a⊥) evolution and cold fluid plasma response (n and Ez) for k0 = 20kp, kpL = 2, and a0 = 1 (a)–(d) (right)
and a0 = 2 (e)–(h) (left). Time increases from top to bottom. For a0 = 1: (a) ωpt = 500; (b) ωpt = 1500; (c) ωpt = 2500;
and (d) ωpt = 3500. For a0 = 2: (e) ωpt = 500; (f) ωpt = 1000; (g) ωpt = 1500; and (h) ωpt = 2000. The evolution in the
two cases follows the same general pattern: pulse steepening due to self-phase modulation leading to an increase in wakefield
amplitude followed by a dramatic increase in the length of the laser pulse and a corresponding decrease in wake amplitude.
The longitudinal electric field Ez is shown as a multiple of E0 = mcωp/q while the plasma density n is shown as a multiple of
the initial density n0.

For a0 = 2, the evolution of the system is qualitatively
similar but more rapid, with the most striking difference
being the rapid change in wakefield phase-velocity (as in-
ferred from the phase-fronts) at ωpt ≈ 1400; see Fig. 2(b)
and (f).

A. Pulse energy evolution

The laser field will drive a transverse plasma cur-
rent 4πj⊥ = 4πqnv⊥ = ω2

p(mc2/q)(n/n0)a⊥/γ, that
will do work, extracting energy from the laser pulse.
The wave equation for the laser in the co-moving vari-
ables may be written as (−2c∂2

ξt − ∂2
t )a⊥ = ω2

pρa⊥,
where ρ = (n/n0)/γ. We represent the laser field
by a complex envelope â and central wavenumber k0:
a⊥ = Re[â exp(−ik0ξ)], and assume |∂ctâ| $| ∂ξâ|. Fur-
thermore, we will consider only propagation in an under-
dense plasma kp $ k0 and assume a short laser pulse,
kpL ∼ 2. With these assumptions, the wave equation be-
comes (ik0−∂ξ)∂ctâ = k2

p ρ â/2, where we have neglected
∂2

ctâ and averaged ρ over the fast laser oscillation. With-
out further approximation, the laser wave equation can
be expressed as

∂ct|(1 + ik−1
0 ∂ξ)â|2 = −

k2
p

2k2
0

ρ ∂ξ|â|2. (2)

An evolution equation for the normalized laser energy,
E =

∫

d(kpξ) |(1 + ik−1
0 ∂ξ)â|2, is obtained by integrating

Eq. (2):

∂E
∂ωpt

= −
k2

p

2k2
0

∫

dξ ρ ∂ξ|â|2 =
k2

p

2k2
0

∫

dξ |â|2 ∂ξρ. (3)

Equation (3) describes the cost in laser energy for exci-
tation of a plasma wave, and may be written as6

∂

∂ct

∫

dξ(E2
⊥ + B2

⊥)/8π =
E2

0

16π

∫

dξ|â|2∂ξρ, (4)

where E0 = mcωp/q. For a short laser pulse, ∂ξρ < 0,
and energy is extracted from the laser.

Assuming a quasi-static plasma response, the integral
in Eq. (3) may be evaluated as follows. In the quasi-static
approximation,18 the dimensionless electrostatic poten-
tial φ satisfies

∂2φ

∂(kpξ)2
=

1

2

[

γ2
⊥

(1 + φ)2
− 1

]

, (5)

where γ2
⊥ = 1 + |â|2/2 is the Lorentz factor associated

with the electron quiver motion and ρ = (1+φ)−1. Solv-
ing Eq. (5) for |â|2, we have

|â|2∂ξ(1 + φ)−1 = −2∂ξ

[

1 + φ+ (1 + φ)−1 + (∂kpξ φ)2
]

.
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FIG. 2: (Color) Details of the system evolution for k0 = 20kp, kpL = 2, and a0 = 1 (a)–(d) (right) and a0 = 2 (e)–(h) (left).
Shown is the evolution of: the laser pulse [(a) and (e)]; the wakefield [(b) and (f)]; the laser vector potential power spectral
density (PSD) in arbitrary units [(c) and (g)]; and laser energy E (red), the mean wavenumber 〈k〉 computed from the first
moment of the laser vector potential PSD (blue), each normalized to their respective initial values (left axis) and the relative
change in the wave action W (green; right axis) [(d) and (h)].

Therefore, the energy evolution Eq. (3) can be written as
∂ωptE = constant. The constant can be evaluated from
the first integral of Eq. (5). Before the laser, φ and ∂ξφ
are identically zero. Behind the laser pulse (γ⊥ = 1), the
first integral of Eq. (5) is

(∂φ/∂kpξ)
2 = (Emax/E0)

2 + 1 − φ− (1 + φ)−1, (6)

where Emax is the maximum electric field amplitude be-

hind the laser. Therefore the evolution equation for the
laser energy is

∂E/∂ωpt = −
(

k2
p/k2

0

)

(Emax/E0)
2 . (7)

For a quasi-static plasma response, the gradient in laser
energy is determined by the amplitude of the laser-driven
plasma wave field. This is a general result, independent
of laser pulse shape or intensity.
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FIG. 4: Evolution of the maximum wakefield amplitude,
Emax/E0, for various initial laser intensities and wavenum-
bers.

For a flat-top laser pulse of optimally matched pulse
length,18,19 Emax/E0 = (γ2

⊥ − 1)/γ⊥, and the energy

evolves as ∂E/∂ωpt = −
(

k2
p/k2

0

) (

γ2
⊥ − 1

)2
/γ2

⊥. In the
weakly-relativistic regime |â| $ 1, ∂tE ∝ −|â|4, and, for
ultra-intense laser pulses |â| % 1, ∂tE ∝ −|â|2.

Figure 3 shows the laser energy evolution versus nor-
malized distance k3

pz/k2
0 for a range of laser intensities

and ratios of the laser and plasma frequency. (All re-
sults shown in Fig. 3 and subsequent figures take the
initial laser pulse profile to be a Gaussian with kpL =
2.) At early times, we see the (k3

pz/k2
0)-dependence in
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FIG. 5: Rate of change of laser energy, ∂E/∂ωpt, (lines), com-
pared to Eq. (7) (symbols: k0 = 10kp, crosses; k0 = 20kp,
diamonds; and k0 = 40kp circles), for various initial laser in-
tensities and wavenumbers.

the energy evolution. The emergence of additional k-
dependence at later times (kpz ! πk2

p/k2
0) is not an in-

dication that the quasi-static plasma response for wake
excitation is no longer valid, but rather that the laser
evolution contains additional k-dependence in the non-
paraxial operator of Eq. (2) and the neglected operator
∂2

ctâ.
Figure (4) shows the amplitude of the field of the ex-

cited plasma wave Emax/E0. Self-steepening of the laser
pulse increases the laser intensity and the amplitude of
the plasma wave. This is the source of the increasing
rate of energy deposition observed in Fig. (3), i.e., the
departure from a linear decrease in laser energy. Shown
in Fig. 5, is a comparison of the rate of change of the laser
energy (solid lines) compared to the prediction of Eq. (7)
(symbols), with Emax/E0 as shown in Fig. 4. Overall the
agreement is excellent. This is due to the fact that Eq. (7)
is an instantaneous expression for the rate of energy loss;
the neglected term in the wave equation evidently remain
small and, at any instant in time, the quasi-static plasma
remains a very good approximation.

B. Pump depletion length

The characteristic scale length of laser energy depo-
sition into plasma wave excitation, i.e., pump depletion
length, Lpd may be defined as

∂E/∂ct ≡ −E/Lpd, (8)

or kpLpd = (k0/kp)2(E0/Emax)2E . The pump depletion
length may also be written as Lpd E2

max =
∫

dξ(E2+B2).
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For a flat-top laser pulse of optimal length [i.e., for
laser pulse length of kpLopt = 2γ⊥E2(1−γ−2

⊥ ), where E2

is the complete elliptic integral of the 2nd kind18,19], the
initial pump depletion length can be evaluated:

kpLpd =
k2
0

k2
p

2γ2
⊥kpLopt

γ2
⊥ − 1

≈
k2
0

k2
p

{

4π/a2
0, for a2

0 $ 1

23/2a0, for a2
0 % 1,

(9)

where Emax = (γ2
⊥−1)/γ⊥ and E # Lopta2

0 = 2Lopt(γ2
⊥−

1) to leading order. The minimum pump depletion length
occurs at a0 ≈ 2.3. Equation 9 was obtained in Ref. 4
based on energy conservation arguments. Although the
flat-top pulse is simple to evaluate analytically, it is some-
what unphysical as it is difficult to produce experimen-
tally. In addition, a flat-top pulse has the property that
the optimal pulse length increases with increasing a0. In
particular kpLopt #

√
2 a0 for a0 % 1. This scaling is

responsible for the linear scaling Lpd ∝ a0 at a0 % 1 in
Eq. (9). In contrast, for a Gaussian pulse the optimal
pulse length is approximately independent of a0.

In general, the excitation of the plasma wave has a
broad resonance. For a Gaussian of fixed pulse dura-
tion near linear resonance, solutions to Eq. (5) indicate
that the plasma wave amplitude can be approximated as
Emax # (π/2e)1/2(γ2

⊥−1)/γ⊥. Fixing the Gaussian pulse
length at the linearly resonant value, the pump depletion
length becomes

kpLpd #
k2
0

k2
p

25/2e

π1/2

γ2
⊥

γ2
⊥ − 1

≈ 8.7
k2
0

k2
p

{

2a−2
0 , a2

0 $ 1

1, a2
0 % 1.

(10)
In this case, the pump depletion length is independent of
laser intensity for a0 % 1.

If we assume an initially linear increase in wake am-
plitude with scale length equal to the depletion length,
Emax(z)/Emax(0) # 1+ z/Lpd, as results from the steep-
ening of a2

⊥ and as indicated in Fig. (4) for z $ Lpd, then
Eq. (7) predicts the length to deplete a fraction of the

laser energy ∆E = 1− E/E(0) is L̂pd = L(0)
pd (∆E −∆E2),

where L(0)
pd is the pump depletion length at z = 0.

Figure 6 shows the length to deplete a fraction of the
laser energy versus laser intensity. The grey curves are

L̂pd with L(0)
pd given by Eq. (10) for a resonant Gaussian

laser pulse. Agreement is excellent for ∆E $ 1 (i.e., for

z $ L(0)
pd ). Departure from the analytic pump depletion

length occurs deep into depletion due to laser pulse de-
formation; laser profile changes result in a larger wake
excitation and increased energy deposition. Hence, in
deep depletion, the analytic pump depletion length will
overestimate the length required to deposit a fraction of
the laser energy [as shown in Fig. (6)].

The depletion scale length defined in Eq. (8) can also
be derived heuristically.3,4 Consider the length for which
the total field energy in the plasma wave is equal to half
the initial laser energy. That is, approximating the to-
tal plasma wave energy density (averaged over many os-
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FIG. 6: (Color online) Pump depletion lengths for selected
fractional energy loss various values of k from direct solution
of Eqs. (1) (symbols) and L̂pd with L(0)

pd given by Eq. (10) for
a resonant Gaussian laser pulse (grey line).

cillations) as E2
max/16π and setting Lpd(E2

max/16π) ∼
k−1

p (mcω0/e)2E/16π, yields Lpd ∼ (k2
0/k3

p)(E0/Emax)2E .

C. Laser red-shifting

The average wavenumber of the pulse, 〈k〉, may be
defined as the first moment of the vector potential power-
spectral density:

〈k〉 =

∫ ∞

0
dk k|ã⊥(k)|2/

∫ ∞

0
dk |ã⊥(k)|2 (11)

where ã⊥(k) is the Fourier transform in ξ of a⊥. Using
standard Fourier transform relations, it can be shown
that

∫ ∞

0
dk k|ã⊥(k)|2 = −

∫ ∞

−∞

dξ H[a⊥](ξ) ∂ξa⊥,

where H[a⊥] is the Hilbert transform of a⊥. Express-
ing a⊥ in terms of the envelope â and averaging over
the fast time-scale, we find −

∫ ∞

−∞
dξ H[a⊥](ξ) ∂ξa⊥ =

1
2

∫

dξ [k0|â|2 + Im(â∗∂ξâ)] = 1
2W, where W is the wave

action. Thus we have 〈k〉 = 1
2 W/

∫ ∞

0 dk |ã⊥(k)|2. In
terms of a⊥, the normalized pulse energy is k2

0E =
∫

d(kpξ) (∂ξa⊥)2 = 2kp

∫ ∞

0 dk k2|ã⊥|2. At early time, be-
fore the pulse envelope has distorted significantly, we can
approximate this as k2

0E ≈ 2〈k〉2kp

∫ ∞

0 dk |ã⊥(k)|2 and we
have 〈k〉 = k2

0E/(kp W). The disparity between the laser
and plasma time-scales, leads to the adiabatic invariance
of the wave-action6,17 and thus

〈k〉−1∂ct〈k〉 = E−1∂ctE = −1/Lpd. (12)

Hence the central laser wavenumber red-shifts ∂t〈k〉 < 0
with the characteristic scale length equal to Lpd. Figure 7
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FIG. 7: Laser wavenumber, normalized to k0 versus propaga-
tion distance k3

pz/k2
0, for various laser intensities.

shows the evolution of the mean laser wavelength versus
k3

pz/k2
0. Comparison between Figs. (7) and (3) shows

excellent agreement with Eq. (12).

Numerically, accurately capturing small changes in 〈k〉
requires particularly fine resolution. To detect a shift of
in wavenumber δk over N cycles in a quantity represented
on a grid, requires a resolution that scales like k0∆ξ <
2N πδk/k0, suggesting that the resolution requirements
scale like (k0/kp)2. As can be seen in Fig. 5, ∂tE is most
accurate for moderate to large a0 and for small k0. Since
all numerical results were obtained with constant k0∆ξ =
1/32, we expect the cases where the relative wavenumber
shifts are largest to yield the most accurate evolution of
the laser energy, that is for moderate a0 and small k0.

D. Laser pulse length evolution

The evolution of the pulse length is shown in Fig. 8
for various values of normalized laser intensity a0 and
wavenumber ratio k0/kp. The laser pulse profile is ini-
tially Gaussian with length kpL = 2. The pulse length
is computed from the ξ-variance of the energy density.
Note that, as shown in Fig. 1, the pulse does not re-
main Gaussian, and the pulse will develop a significant
third-order moment (skew). The laser pulse length ex-
hibits some modest pulse compression, due to the wake-
induced gradient in the index of refraction at the back of
the pulse, followed by rapid expansion of the pulse (most
pronounced in the a0 > 1 cases).
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FIG. 8: Pulse length, kpL, computed from the ξ-variance of
the energy density, versus propagation distance k3

pz/k2
0 for

various laser intensities.

III. CONCLUSION

Through a comprehensive numerical study, we have
obtained a detailed description of energy depletion of in-
tense, short-pulse lasers via resonant excitation of plasma
waves in 1D. The rate of energy deposition into the
plasma by the laser is a non-linear process dependent on
the laser pulse amplitude and length and the ratio of the
plasma density to the critical density. Correspondingly,
the pump depletion length depends on these same param-
eters in a complex way. The evolution of a resonant laser
pulse proceeds in two phases. In the first phase, the pulse
envelope is modified via self-phase modulation, resulting
in pulse steepening and pulse compression. The central
wavenumber of the pulse is reduced as energy is deposited
in the plasma (red-shifting). The second phase of evolu-
tion occurs after the pulse reaches a minimum length,
at which point the pulse length rapidly lengthens, losing
resonance with the plasma. This causes the plasma wave
amplitude, and hence rate of laser energy depletion, to
rapidly decrease.

An analytical theory was developed to describe the de-
pletion process based on the 1D wave equation for the
laser pulse coupled to the nonlinear quasi-static fluid
equations. In particular, both the pulse energy and av-
erage wavenumber have the same intrinsic scale length:
∂ctE = −E/Lpd and ∂ct〈k〉 = −〈k〉/Lpd, where kpLpd =
(k0/kp)2(E0/Emax)2E . This result is general: it is fully-
nonlinear and valid for arbitrary pulse shape. This ex-
pression is found be to in excellent agreement with direct
numerical solution of the unapproximated Maxwell-cold
fluid equations over the entire propagation distance. This
agreement suggests that at any instant in time, the quasi-
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static approximation to the plasma response is accurate
for near resonant laser pulses. Numerical modeling of
laser depletion requires accurately resolving the laser fre-
quency shifts, and hence a grid sufficiently small to re-
solve a small fraction of the laser wavelength.

This analysis was also used to derive analytical ex-
pressions for the pump depletion length. For an op-
timized flat-top pulse, the pump depletion length is
kpLpd # (k2

0/k2
p)(4π/a2

0) for a2
0 $ 1, and kpLpd #

(k2
0/k2

p)(
√

8a0/π) for a2
0 % 1, in agreement with pre-

vious estimates.4,20 The numerical studies presented in
this work took the initial laser pulse to have a linearly-
resonant Gaussian profile. Solutions of the quasi-static
wakefield equation [Eq. (5)] indicate that, for a Gaussian
laser profile, the wake amplitude is rather insensitive to
the pulse length and that the pulse length correspond-
ing to maximum wake amplitude is approximately the
linearly-resonant pulse length (kpL = 2) over the laser
intensity range of interest. For a linearly resonant Gaus-
sian pulse, the depletion length was found to be kpLpd #
17.4(k2

0/k2
p)/a2

0 for a2
0 $ 1, and kpLpd # 8.7k2

0/k2
p for

a2
0 % 1. Notice that in the high intensity limit, the deple-

tion length is independent of intensity. These expressions
for Lpd were found to be in good agreement with the nu-
merical solutions of the full Maxwell-fluid equations for
moderate laser depletion. For example, the length re-
quired to deplete 5% of the laser energy is Lpd/20, the
length required for 10% is Lpd/10, etc. For deep deple-
tion, the simple expressions for the depletion length un-
derestimate the amount of energy loss. This is because

pulse deformation results in increased wake amplitude
and enhanced depletion. Numerical solutions indicate
that significant depletion is possible (∼50%) for a0 ∼ 1–
2 before pulse lengthening causes loss of resonance with
the plasma and reduction of the plasma wave amplitude.

Here we have assumed that the dynamics of laser deple-
tion in a plasma channel can be adequately approximated
by the longitudinal dynamics. A preliminary study in
multi-dimensions indicates that this is a good approx-
imation for matched pulses propagating in broad chan-
nels with a characteristic transverse dimension r0 % k−1

p .
For such a matched pulse in a channel, pulse diffraction
is balanced by channel focusing and self-focusing effects,
resulting in minimal transverse evolution of the pulse.
Furthermore it was assumed that the wakefield has not
undergone complete cavitation of the plasma electrons,
which is valid for intensities such that a2/γ⊥ < (kpr0)2/2.
Nonlinear pulse evolution in multi-dimensions will be a
topic of further study.
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